Wednesday, January 2, 2019

Minimisation


The most important drawback of the randomization software is the problem of unmatched groups. In the process of randomization it is probable that the treatment groups develop significant differences in some prognostic factors, especially when the sample size is relatively small (<200). If these factors have important effects on the primary or secondary outcomes of the study, any important difference in the levels of these factors invalidate the trial results, and necessitate complicated statistical analysis with unreliable results. Various methods have been used to overcome the problem of unmatched trial groups including minimization and stratification, with minimization providing more acceptable results. With minimization the first subjects are enrolled randomly into one of groups. The subsequent subjects will be allocated to treatment groups after hypothetical allocation of each subject to every group, and then calculating an imbalance score. Using these imbalance scores, we can decide to which group the new subject must be allocated, to have the minimum amount of imbalance, in terms of prognostic factors. Pure minimization is indeed completely deterministic, that is, we can predict which group the next subject will be enrolled in, provided the factor levels of the new subject are known. This may invalidate the principle of trial blindness and introduce some bias into the trial. To overcome this shortcoming some elements of randomness are incorporated into the minimization algorithm, to make the prediction unlikely. Unfortunately the whole process of minimization is well beyond the skill of a typical clinical researcher, especially when the problem of unequal group allocations has to be taken into account. The difficulty in computation has resulted in a relatively less frequent use of minimization methods, in randomized clinical trials. The computer software can perform excellently in these situations, especially when the implementation has been logical. In the following sections, the aspects of two minimization programs are presented. Again the selection of these programs is based on the availability and ease of use.

Creative Commons License
PSM / COMMUNITY MEDICINE by Dr Abhishek Jaiswal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Based on a work at learnpsm@blogspot.com.
Permissions beyond the scope of this license may be available at jaiswal.fph@gmail.com.

No comments:

Post a Comment